WATER REUSE AT HIGHWAY REST AREAS: FOLLOW-UP OF IMPLEMENTATION

by

Clinton E. Parker Faculty Research Engineer

and

John W. Reynolds Highway Chemist

(The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agencies.)

Virginia Highway & Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways & Transportation and the University of Virginia)

In Cooperation with the U. S. Department of Transportation Federal Highway Administration

Charlottesville, Virginia

April 1979 VHTRC 79-R43

ENVIRONMENTAL RESEARCH ADVISORY COMMITTEE

MR.	E.	Τ.	ROBB, Chairman, Asst. Environmental Quality Engineer, VDH&T
MR.	Μ.	C.	ANDAY, Assistant Head, VH&TRC
MR.	R.	E.	BLASER, University Distinguished Professor, VPI & SU
MR.	L.	E.	BRETT, JR., District Engineer, VDH&T
MR.	R.	E.	CAMPBELL, Assistant Transportation Planning Engineer, VDH&T
MR.	Α.	R.	CLINE, District Environmental Coordinator, VDH&T
MR.	R.	۷.	FIELDING, Materials Engineer, VDH&T
MR.	R.	L.	HUNDLEY, Environmental Quality Engineer, VDH&T
MR.	Α.	Β.	JOHNSON, Assistant Construction Engineer, VDH&T
MR.	D.	D.	MCGEEHAN, Research Analyst, VH&TRC
DR.	TOT	1 S.	TEPHENS, Associate Professor of Civil Engineering, VPI & SU
MR.	₩.	Ρ.	TUCKER, Right-of-Way Engineer, VDH&T
MR.	R.	G.	WARNER, Assistant Construction Engineer, VDH&T
MR.	ROI	BER	I WELTON, Environmental Coordinator, FHWA
MR.	J.	E.	YEATTS, Assistant Location and Design Engineer, VDH&T

ii

ABSTRACT

A water recycle-reuse system researched and developed by the Virginia Highway and Transportation Research Council for treating water closet flush water was constructed at an existing rest area. An existing 10,000 gpd (37,800 lpd) biological wastewater treatment system and rest area piping system were modified to accommodate water reuse. The recyclereuse system consisted of biological treatment (extended aeration) followed by gravity sedimentation and granular filtration. It was designed for 95% water reuse with 5% makeup from sewered potable uses such as wash basins.

The field system became operative on November 15, 1976, and on August 31, 1977, an evaluation study was concluded. Based on results of the evaluation phase the water recycle-reuse design became an accepted alternative for resolving water supply and water pollution problems at Virginia highway rest areas.

From September 1, 1977, through August 31, 1978, an implementation follow-up study was made. During this period reuse of flush water varied between 92.0% and 96.7%. Potable uses that were sewered amounted to less than 5%, resulting in recycle in excess of 95% without the use of makeup water. Recycled flush water was stable and was acceptable to the rest area user at all observed recycle levels.

Operation of the biological and physical treatment units followed conventional guidelines. The biological system functioned satisfactorily at a low pH of from 5.5 to 6.5 and low alkalinity. The low pH and alkalinity resulted in complete nitrification and high ammonia nitrogen and nitrite nitrogen concentrations. Although high equilibrium nitrogen concentrations occurred, they were not detrimental to the process. Biological solids were filamentous but were satisfactorily separated from the flush water by gravity sedimentation. The system satisfactorily responded to seasonal variations in waste characteristics and water reuse imposed by the users as well as seasonal climatic Operation and maintenance requirements at the variations. rest area site did not significantly increase as a result of the recycle-reuse system.

Results from this study confirmed the conclusions of the evaluation study phase. The recycle-reuse system proved to be an acceptable and economical means of resolving water supply and water pollution problems at rest areas.

l potable us eld system b

ACKNOWLEDGEMENTS

The cooperation of the Virginia Department of Highways and Transportation's Environmental Quality Division, Staunton District Office, and Lexington Residence Office during this implementation follow-up study is gratefully acknowledged.

The study was financed from highway planning and research funds administered by the Federal Highway Administration of the U. S. Department of Transportation.

WATER REUSE AT HIGHWAY REST AREAS: FOLLOW-UP OF IMPLEMENTATION

by

Clinton E. Parker Faculty Research Engineer

and

John W. Reynolds Highway Chemist

INTRODUCTION

Previous Developments

As a result of experiences with water and wastewater problems in the Commonwealth of Virginia, the Virginia Highway and Transportation Research Council sponsored the research and development of a water recycle-reuse system for flushing water closets at highway rest areas. Based on the developed concept an existing wastewater disposal system at a rest area on Interstate 81 (milepost 200) near Fairfield, Virginia, was modified to incorporate water reuse. The system became operative on November 15, 1976, and was evaluated from startup until equilibrium was assured on August 31, 1977. The results of this initial evaluation phase, as well as the results of the research and development work, have been published. (1,2,3)The report by Parker⁽³⁾ provides a thorough description of the recycle-reuse concept, the field system design, and operation details that should be incorporated into future installations. The work reported here is an extension of the evaluation phase. The purpose of continuing the field evaluation was to provide a follow-up study of the implementation covering the seasonal traffic experienced during a full year's operation while the system was under the operational supervision of field personnel.

Water-Recycle-Reuse System

Plumbing at an existing rest area that employed biological wastewater treatment (extended aeration) designed to treat 10,000 gpd (37,800 lpd) was modified to separate potable water use from water closet flush water use. A granular pressure sand filter with pre- and postfiltration storage tanks and a hydropneumatic tank was installed in a closed loop to

filter effluent from the biological system and to return water to the water closets as the flush fluid. Filter backwash water was collected in a separate storage tank and returned to the influent of the biological treatment system during off-peak use of the rest area. A blue food dye was added to the recycled water to assure public awareness and aesthetic conditions.

The filter was 6.0 ft (1.83 m) in diameter and was operated at a filtration rate of 2.3 gpm/ft² (94 lpm/m^2) . Filter cleaning rates were 30 gpm/ft² $(1,220 \text{ lpm/m}^2)$ for backwash. Water closet flush water passed through biological treatment and rapid sand filtration in a closed loop system with provisions for the addition of wasted potable water from other rest area uses and the release of an equivalent amount of water to a pond where evaporation occurred. Potable water needs were served by a well through a separate pipe network.

A flow diagram of the water recycle-reuse system installed at the rest area is shown in Figure 1. Complete details of the unit processes and unit operations employed and an evaluation of the installation design can be found elsewhere.⁽³⁾

Previous Results: Evaluation Phase

The detail evaluation of start-up and implementation of the recycle-reuse system can be found in the report by Parker.⁽³⁾ The summary and conclusions from that report are presented here.

The Research Council identified the water quality and quantity needs at rest areas and used a bench-scale, extended aeration biological treatment unit followed by granular media filtration to evaluate the recycle and reuse of water to flush water closets. Data from the bench-scale were used to design and construct a field recycle and reuse demonstration facility at an operating rest area.

Operation of the field demonstration system from November 15, 1976, to August 31, 1977, allowed the system to reach water balance equilibrium conditions and provide an acceptable flush water at a 95% reuse level. As water balance equilibrium was attained and during equilibrium the physical, chemical and biological quality of the water was acceptable for its intended use. The recycled water did not have any detectable characteristic odor or objectionable odor and as a result of the dye had a turquoise color at equilibrium flow conditions.

At 95% recycle the water was used on the average of 20 times and the amount of water sewered from potable water use and human excretion was approximately equal to the 5% of the daily flow wasted to a holding lagoon. The potable water sewered from nontoilet uses provided a daily nonrecycled quantity to the recycle system that assured a water quality equilibrium condition that was not detrimental to the biological treatment system. At the water equilibrium condition the nonrecycled water input to the recycle system and water wastage from the system were equal. Water wastage from the recycle system occurred by evaporation from the extended aeration units and the surface of holding tanks and through an overflow to a terminal holding pond. During the period March 13, 1977, to August 31, 1977, 880,000 gal $(3.3 \times 10^6 1)$ of water were recycled and reused in the closed loop system. Although water overflow from the closed loop system to the terminal holding pond occurred, there was no net accumulation of wasted water and, as a result, a zero effluent discharge.

Excess biological solids from the extended aeration unit were wasted during the period of study; however, the frequency of wastage and the handling of the wasted biological solids were the same as practiced at the rest area prior to the installation of the recycle and reuse system.

Results from the evaluation phase indicated water reuse at rest areas is more economical than a mineral oil flush system and can be considered as a viable alternative for solving water and wastewater problems at highway rest areas. The results provided the fundamental details necessary for the design and operation of a water recycle and reuse system to flush water closets and for the implementation of water reuse at rest areas on a site-specific basis.

The conclusions from the evaluation during implementation research were as follows: $^{(3)}$

1. Effluent from the biological extended aeration treatment of rest area wastewater can be filtered by a granular pressure filter to produce water that can be recycled and reused a multiple number of times for toilet flushing. Water treated, recycled, and reused at least 20 times does not produce a readily detectable or objectionable odor. Recycled water dyed with a blue food coloring imparts a turquoise color to the water that is not objectionable in appearance. No special cleaning

- 2. Water inputs into the recycle system resulted from potable water use wastage plus liquid human wastes. The wasted potable water came from wash basins, water fountains, and custodial services and amounted to 5.8% of the total water used at the rest area. The water balance was approximately 95% recycle.
- 3. To obtain zero discharge, a water volume equal to the potable water input and liquid human excrement must be disposed of. During the period of operation excess water from the system went to a holding lagoon. Evaporative losses from the various tanks, aeration, and the lagoon resulted in no net water accumulations in the holding lagoon. In geographical areas with warm climates, zero discharge can be accomplished by designing the system to take advantage of solar evaporation.
- 4. Biological oxidation of organics was not hindered by the quality of the recycled water. The biological treatment system produced a water that was low in biodegradable organics and that was free of repugnant or disagreeable odors.
- 5. Extended aeration biological treatment employed to treat recycled and reused water will function at conditions not normally experienced when these systems are used to treat domestic wastewater. The biological transformation of ammonia nitrogen to nitrate nitrogen will not be complete. Ammonia, nitrite, and nitrate nitrogen will accumulate in the system, but not at levels that will be toxic to the hetertrophic organisms that oxidize the organics. The biological population in the summer will shift to those that can adapt to a low pH of 5.5 to 6.5 and low alkalinity of about 50 mg/l. Winter operation will result in a biological population that can tolerate a higher pH of 7.0 to 8.3 and a higher alkalinity of 100 to 500 mg/1. The heterotrophes present in the summer will consist of a large population of filamentous fungi.

- 6. Wastage of biological solids in the treatment of recycled water does not significantly increase over the wastage experienced with non-recycled treatment of rest area wastewater. The current practice of using MLSS settleability as an operational test to determine the need for the wastage of biological solids can be continued. Wastage should be accomplished to maintain an MLSS concentration of 3,500 mg/l to 4,500 mg/l in the aeration unit. These concentrations can be maintained by wastage when the settleable MLSS is above 600 to 800 ml in a litre graduated cylinder after 30 minutes of settling.
- 7. The use of the BOD test to determine biodegradable organics in a recycle-reuse system that employes biological extended aeration will not provide meaningful results. Due to the ammonia nitrogen present, the oxygen utilization in the test will be significantly influenced by its conversion to nitrate nitrogen in the test procedure. Five-day BOD values can be expected to be high and erratic.
- 8. Manpower requirements for the operation of the rest area are not significantly impacted by the use of a biological extended aeration and pressure filtration water recycle-reuse system.
- 9. Water use characteristics of a rest area significantly affect the unit sizes of a recycle system and the construction cost. Water use requirements should be carefully analyzed to assure optimum sizing of storage tanks, the hydropneumatic tank, the filter, and pumps. A clear distinction should be made between the instantaneous flow requirements placed on the piping system and the lower average flow requirements that establish the sizing of other components in the system. Overestimates in flows and excessive use of factors of safety in sizing will significantly impact capital costs.
- 10. Water recycle-reuse is an economical alternative to the use of a mineral oil system.

In addition to the preceding summary and conclusions taken from the start-up evaluation, the following pertinent details found in the report should be noted.

- 1. Since the facility was considered experimental by state regulatory agencies, the installed equipment (basins, tanks, pumps, and filter) was overdesigned and plumbing and appurtenances were included that would not otherwise have been incorporated in the design; e.g., a 3 ft to 4 ft (0.91 m to 1.22 m) diameter filter would have been sufficient, storage tanks would have been smaller, and "future" use valves would have been eliminated.
- 2. The filter system was operated in the automatic backwash mode based on head loss but, due to filter overdesign, it could go for 3 to 6 weeks without backwash. (This is contrary to good filtration practice where backwashing every 3 to 4 days or a minimum once weekly is recommended.)
- 3. No filter aid was required and the blue food coloring dye persisted for 30 to 90 days; hence, the two chemical feeders installed served no useful purpose.
- 4. Ammonia nitrogen losses occurred due to elevation of flush water pH upon use and agitation in the sewer between the water closet facility and the biological wastewater treatment facility. This loss resulted in a nitrogen balance that was not detrimental to the biological process.
- 5. In geographical areas where severe freezing may occur it would be desirable to have the biological system and storage basins housed in the ground with access within the filter or operations building.
- 6. The flow scheme proposed for modification of existing extended aeration (biological treatment) systems was as shown in Figure 2.

2-92

RESULTS OF IMPLEMENTATION FOLLOW-UP

The follow-up on the implementation of the system was initiated immediately following the start-up evaluation phase in September 1977. During start-up water reuse was reported as a percentage of the total rest area use (including sewered and unsewered potable usages) and varied between 91.3% and 96.0% with an average value of 94.1%. On August 31, 1977, the ratio of water recycled to the initial water in the system was 20.53 and analytical data indicated the system was at water reuse equilibrium.

The day-to-day operation of the recycle-reuse system for the follow-up study was the responsibility of the rest area custodian. On a weekly basis the facility was visited by personnel from the Virginia Department of Highways and Transportation (Staunton District) and/or personnel from the Research Council. Decisions concerning the addition of dye, sludge wastage, filter backwash, and water balance were the cooperative effort of personnel from the District Office and the Research Council. No special conditions were necessary or imposed upon the operation of the system.

The only chemical added to the system was blue food coloring dye, FD&C Blue No. 1 (Brilliant Blue). This was added by hand as a solution on an as-needed basis. Decisions to add dye were based on the appearance of the recycle water in the water closets. Less than 5 lb (2.3 kg) were used during the 12-month follow-up study.

During the follow-up study, construction was completed for a third water closet facility at the rest area. This addition was made so that two facilities (one for men and one for women) could be open while the third was being cleaned. In addition, all wash basin water faucets were changed to a water-saving (time release) fixture. Between December 1 and December 15, 1977, two of the water closet facilities with water-saving fixtures were open to the public. Conversion of the third was completed January 20, 1978.

As construction of the additional water closet came to a close it was apparent that in the evaluation start-up phase potable water use was significantly affected by landscape watering and other unsewered outside potable water uses such as drinking fountains. (Water metered at the rest area was total potable use and as a result sewered and unsewered uses at the rest area were inseparable. Hence, potable use by the rest area user that was sewered and entered the recycle-reuse system as a new water addition was not measureable.) Since

2-01

the percentage water recycle calculated in the start-up evaluation phase was based on all potable use at the rest area being sewered, the actual recycle percentage during the evaluation phase was greater than the average 94.1% reported. This trend can be seen from Table 1, where in October (all construction essentially complete and no landscape watering) the percent water reuse as a percentage of total rest area potable water use rose to 96.5%. Due to the underestimate of unsewered potable water uses at the rest area, it was clearly evident that water reuse in the recycle-reuse system was exceeding 95% and that with the addition of water-saving fixtures the reuse percentage would be further increased.

To evaluate the impact of unsewered potable water use the period of October through March was taken as minimal unsewered usage such as landscape use, fountain use, and other outside faucet use. Based on all potable water uses being sewered during this period, the average percent reuse was 96.7%. Reuse at the 96.7% level amounts to an average water reuse in excess of 30 times, compared to an average reuse of 20 times at 95% reuse. It is obvious that a small increase in percent reuse drastically increases the average number of times a water volume is reused. Flush water and potable water use are presented in Tables 1 and 2, respectively. Table 1 shows the percent water reuse based on metered potable water at the rest area (includes all potable water usages). These results show a clear differential between water uses during October through March and those during the months of September, July, and August when substantial unsewered potable use can be expected.

Upon recognition of the underestimated percentage recycle and based on data that supported acceptable flush water quality at 95% reuse, addition of small amounts of potable makeup water to the recycle loop was necessary for maintaining 95% reuse. This addition was initiated April 17, 1978, and continued through August 31, 1978. An evaluation of water reuse for the study period on a monthly basis is presented in Table 3. Recycle-reuse values presented in columns 4 and 5 are the actual values experienced during the study. (Due to unmetered water uses for various purposes in April 1978, recycle percentages are not presented for that month.) During the implementation follow-up 1.76 million gal. (6.65 X 10⁶ 1) of flush water were treated and returned for flushing at an overall recycle of 95.3%. Water was added on a weekly basis but not according to an established formula; hence, a significant variation in makeup occurred.

1																															?	, ~ ₁	۵5	
Average percent recycle based on total potable water use(a)		93.1	6.46	8,46	96.5	96.6	96.8	97.5	95.0	95.9		96.2	96.8	97.9	NA	96 . I	95.7	95.4	95.9	96.2	95.6	94.8	96.1	93.8	94.9	95.7	95.0	96.2	93.9	94.5	95.0	95.4	92.8	
Minimum daily flow, gpd		3,850	2,330	1,750	2,070	1,570	2.020	2.430	1,280	1,380		1,990	520	850	120	1,590	2,410	2,040	2,710	2,580	3,990	3,350	3,740	4,970	4,920	8,220	5,750	5,180	5,525	6,640	4,960	5,120	3,700	table water uses.
maxımum daily flow, gpd		8,240	4,300	5,680	6,400	7,730	6,750	11,070	3,590	3,930		8,270	2,900	4.670	6,870	9,420	10,170	7,646	7,930	9,680	16,350	8,030	12,170	13,020	11,020	17,630	14,320	11,475	12,390	13,015	13,470	11,030	12,570	unsewered po
Average daily flow, gpd		5,026	3,306	3,511	3,574	4,257	3,766	4,681	2,479	2,538		4,828	1,746	2,181	2,521	4,235	4,702	4,676	5,237	6,090	7,504	6,020	6,566	6,997	7,885	13,385	9,770	8,633	8,372	8,976	8,833	8,379	8,221	3.785 litres. l sewered and
Accumutated volume used, gallons		917,795	940,935	990,085	1,065,145	1,124,745	1,177,465	1,242,995	1,260,345	1,290,805		1,368,055	1,404,725	1.430.895	1,519,135	1,569,955	1,631,080	1,696,550	1,769,865	1,855,125	1,907,655	1,949,795	l,995,755	2,044,735	2,107,815	2,188,125	2,256,515	2,316,945	2,375,550	2,438,385	2,500,215	2,558,865	2,673,955	: l gallon = Includes al
Date	1977	9-07	9-14	9-28	10-19	11-02	11-16	11-30	12-07	12-19	1978	1-04	1-25	2-08	3-15	3-29	4-12	4-26	5-10	5-25	5-31	6 - 07	6-14	6 - 21	6-29	7-05	7-12	7-19	7-26	8-02	8-09	8-16	8-30	Note: (a)

Flush Water Use

Table 2

Potable Wa	ater Us	se
------------	---------	----

Date	Accumulated volume used, gallons	Average daily flow, gpd	Maximum daily flow, gpd	Minimu daily flow gpd
1977				
9-07 9-14 9-28 10-19 11-02 11-16 11-30 12-07(a) 12-19(a)	56,183 57,405 60,079 62,825 64,891 66,623 68,299 69,210 70,407	371 175 191 131 148 124 120 130 109	496 226 442 186 294 194 218 269 255	263 132 101 83 72 57 61 60 51
1978				
1-04 1-25 2-08 3-15 3-29 4-12 4-26(b) 5-10 5-25 5-31 6-07 6-14 6-21 6-29 7-05 7-12 7-19 7-26 8-02 8-09 8-16 8-30	73,487 75,517 76,944 79,380 82,123 85,275 88,346 91,753 94,187 96,463 98,300 101,563 104,963 108,536 112,138 114,513 118,341 121,967 125,199 128,040 136,936	193 97 102 174 211 225 219 243 348 325 262 486 425 595 515 339 547 518 462 406 635	338 269 202 438 362 555 310 391 722 692 353 847 494 849 715 546 959 876 667 518	118 31 45 18 117 111 97 131 196 99 147 213 260 428 309 233 247 334 316 305

Note: Potable water use includes both sewered and unsewered usages due to user and custodial services. Water fountains, outside faucets, and landscape water facilities are included.

l gallon = 3.785 litres.

- (a) Low water use wash basin fixtures installed.
- (b) Periodic fresh water addition initiated to maintain 90% 95% water reuse.

Table 3

Monthly Recycle-Reuse

reuse based al potable ering recycle tem, c	avg. number of times reused	30.3	30.3	17.2	12.7	20.0	27.0	
Recycle- on actuo water ento sys	percent	96.7	96.7	94.2	92.1	95.0	96.3	
Recycle based on total potable RA use, (b) percent		94.8	96.7	95.9	94.9	95.2	94.1	
Recycle based on actual potable sewered water,(a) percent		96.7	96.7	96.7	96.7	96.7	96.7	
Potable makeup water added, gallons		0	0	5,680	10,230	4,850	1,240	
Date		September 1977	October 1977 - March 1978	May 1978	June 1978	July 1978	August 1978	

- Based on all potable rest area water use sewered to recycle loop during fall and winter. (a)
- Based on all potable metered water at rest area (sewered and unsewered usages) with no makeup water added. (q)
- Based on actual potable sewered water and makeup added to recycle loop. This is actual recycle-reuse experienced during the implementation follow-up study. (c)

2-07

Inadvertent additions in June resulted in less than 95% recycle. August additions were less than required for 95% recycle due to repairs to the holding pond; hence, the percentage reuse exceeded 95%. The results of changes in water reuse are clearly reflected in the analytical results.

Water in the recycle-reuse system was sampled after flushing (prior to treatment, called raw wastewater), after biological treatment and sedimentation, and just prior to reuse as a flush fluid (from the pneumatic tank). All analyses were made in accordance with Standard Methods for the Examination of Water and Wastewater. (4) Results from analyses of these sampling points are presented in Tables A-1, A-2, and A-3 in the Appendix. Data for recycled water just prior to reuse as a flush fluid are shown in Figures 3 through 10. These data are presented as a function of sampling date. Since conductivity, fixed solids, and chlorides are least influenced by biological oxidation, sedimentation, and filtration, these parameters best indicate changes as a result of new water inputs to the recycle-reuse system. A drop in these values during the later part of January 1978 was the result of meltwater from ice and snow entering the sewer between the rest area and the biological treatment unit. The further decline in April through July resulted from the addition of makeup water. The increase experienced in the month of August resulted from the increase in water reuse as a result of only a small amount of makeup water being added to the system.

Analytical results from analyses of the biological treatment unit are documented in Table 4. The biomass responded to changes in flushed waste characteristics without failure. Fungi were in predominance, but under suitable conditions nitrifying bacteria resulted and produced significant nitrification Due to the low pH and alkalinity, nitrification was not complete and was limited to nitrites. Water inputs were reflected in mixed liquor suspended solids (MLSS) and pH.

DISCUSSION OF RESULTS

Biological Treatment Performance

The performance of the biological treatment system was comparable to its performance during the start-up evaluation phase. The system proved to be durable and effective in the biological oxidation of biodegradable organics and thus

Concentration, mg/

Concentration, mg/l

Concentration, mg/l

Concentration, mg/l (as Witrogen)

20

Concentration, mg/l

Figure 10. Flush water phosphorus.

Table 4

Aeration Basin Analyses

Date	0xygen Ubtake.	WLSS,	MLVSS,	Settling, (a)	(q) ^{IAS}	Temp.,	, DO	Ηd	Alkalinity
	mg/1/hr	mg/l	mg/l	ml		Deg. C	mg/1		(as caco ₃), mg/l
1977									
9-07	10.2	4,268	4,052	750	176	25	ц. З	с У	L 7
9-14	7.6	5,132	4,912	850	166	23	5.2		1 F C
9-28	7.2	4,312	4.084	700	162	19	6.5	5.6	42 42
10-19	4.4	3,756	3,620	800	213	12	6.8	5.3	33
11-02	6.4	4,212	4,044	780	185	15	6,0	5.2	21
11-16	6.0	2.576	2.440	580	225	12	9.2	5.9	38
11-30	6.0	1	1	720	1	æ	9.8	5.6	38
12-07	5.3	3,368	3,236	650	193	7	9.8	5.5	33
12-19	1	3,416	3,280	650		[6		6.6	96
1978									
1-04	5.2	3.576	3.396	780	218	4	1 []	с С	767
1-25	3.6	2,796	2,660	600	215			, c	
2-08	, , , , , ,	3.724	3.468	500	134	=		7.6	192 503
3-15	6.0	4.884	4.668			9	8.5		910
3-29	9.6	456 11,956	4,663	RUN	LAL		ο α ο σ		240
4-12		3,924	3,680	650	167	31	, .	9 9	171
4-26	8.0	2.570	2,437	200	78	σ	8.5	6.3	70
5-10	8.0	2,320	2,180	200	86	14 14	7.0	6.6	96
5-25	9.2	3,000	2,850	300	100	19	5.0	6.3	67
5-31	8.0	3,496	3,324	350	100	20	5.1	6.0	58
6-07	7.6	3,196	3,036	320	100	19	5.3	6.0	54
6-14	10.8	3,692	3,512	530	144	18	2.9	6.1	54
6-21 22	14.0	2,996	2,864	380	127	22	4.7	6.1	59
6 - 2 9 2 0 1	16.2	3,180	3,044	390	123	23	5.0	5.9	46
<u>- 1-0</u>	22.4	3,088	2,908	360	117	21	1.8	7.0	354
7-12	28.4	2,120	1,816	220	104	21	0.4	7.3	563
6T-L	26.4	2,304	2,080	250	109	22	1.2	6.3	19
7-26	20.0	2,477	2,205	280	113	23	0,8	5.7	25
8-02	18.8	2,768	2,428	300	108	23	1.1	5.5	17
8-09	26.4	2,352	2,132	290	123	23	0.7	5,7	37
8-16	22.0	2,252	2,024	260	115	24	2.3	5,6	25
8-30	15.6	1 1 1	1	280	1	24	3,1	 	1
							•		
(a)	Sludge vo	lume occ	upied in	a litre gradu	ated cyli	nder afte	r 30 mj	nutes	settling.
									D

2:07

Sludge Volume Index.

(P)

provided an odor-free and chemically stable flush water. Both nitrogen and phosphorus concentrations were adequate for biological growth. Nitrogen concentrations were high, however, they did not prove to be toxic to the biomass. All changes in the biological unit were in responses to changes in the pH, alkalinity, temperature, and water input.

Oxygen uptake by the biomass responded to expected changes in temperature and nitrification. The range of values experienced were typical of start-up values experienced in the evaluation phase with the exception of July and August 1978. In July a substantial transient increase in the alkalinity of the raw wastewater was experienced. With the high alkalinity and the accompanying increase in pH, significant nitrification This resulted in an increase in the oxygen uptake occurred. and a lowering of dissolved oxygen in the aeration basin, a significant lowering of ammonia nitrogen and nitrite nitrogen, and an increase in nitrate nitrogen. Although an increase in nitrification was observed in the evaluation phase during late summer, it was not to the extent experienced in July and August during this study. Since the trend for the latter part of August was a decrease in nitrification, the changes in nitrification appeared to be solely a response to increases in the pH and alkalinity.

The lowering of the MLSS was a response to sludge wastage and the use of makeup water in an attempt to maintain 95% recycle. The most significant change coincided with the addition of makeup water and the increase in nitrification in July. Although low MLSS values were experienced (and effective) during late summer, the system operated with a MLSS between 3,000 and 5,000 mg/l and a settleability (30 minute settling in a litre graduated cylinder) of 200 to 800 ml during most of the study.

The biomass under aeration was mostly filamentous, but separation of the MLSS from the liquid fraction was good and the carryover of suspended solids from the settling basin was not sufficient to be detrimental to the performance of the granular filter. The physical appearance of the MLSS and the ability to separate the solids from the liquid phase indicated that average water reuse of about 20 times was acceptable and sustained reuse of up to 30 times may cause deterioration in the separation of suspended solids and, ultimately, the quality of the recycle flush water.

The alkalinity and pH in the biological unit followed the same pattern established in the evaluation phase. Extreme changes in the alkalinity were the result of the inputs from the raw wastewater. Variations in alkalinities observed were extreme, 17 to 563 mg/l; however, the operating range was almost solely between 20 and 100 mg/l. The values of pH ranged from 5.1 to 7.9. High pH values were transient, and most often the system maintained a pH between 5.5 and 6.5. The quality of the flush water remained acceptable through all the observed variations in the alkalinity and pH.

Data from the biological unit indicate that a biological system (extended aeration) used to treat recycled water closet flush water at 95% recycle can be routinely monitored by settleable solids, MLSS, pH, alkalinity, temperature, and dissolved oxygen, and that the operation of the system does not differ significantly from the operation of a system treating non-recycled water. Nitrogen and biological oxygen demand will exhibit the greatest difference. Nitrogen will remain in the system primarily as ammonia nitrogen and nitrite nitrogen. Only when highly alkaline wastes are sewered (enter the recycle loop) will significant increases in nitrate nitrogen be detected. Concentrations of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen in the aeration basin as high as 150, 240, and 125 mg/l, respectively, were not detrimental to biological degradation. If significant agitation of the flushed raw wastewater between the flush and the treatment system is provided, an equilibrium concentration of ammonia nitrogen can be expected, except when transient high alkalinities occur. The introduction of waste by the rest area user raises the pH and results in ammonia stripping, provided some form of agitation is applied. At this site, flow in the sewer between the rest area and the biological unit provided sufficient agitation for maintaining nontoxic equilibrium nitrogen concentrations. As a result of the high ammonia nitrogen and nitrite nitrogen maintained in the system, BOD values were of no real significance as a measure of biodegradable organics.

As was the case in the evaluation study, the blue food coloring added to the system was not degraded; hence, the addition of dye was required only periodically and then in small amounts.

Foaming during this study was insignificant and, as a result, no chemical additives were required for control.

Filter Performance

2710

Suspended solids concentrations imposed upon the filter were variable; however, they were usually maintained between 20 and 60 mg/l. Suspended solids in the flush water were generally less than 20 mg/l. Only during the period of freezing and extremely cold weather was a high suspended solids value, 41 mg/l, detected in the flush water.

The performance of the filter was significantly affected by the frequency of backwashing. The filter system was operated in a pressure differential (across the filter bed) backwash mode until May 1978. Because it was overdesigned the filter could operate in this mode without backwash for sustained periods, 4 weeks or more, unless backwashed manually, (Manual backwash while in the pressure differential mode was occasionally performed as a check on the system.) Since good standard practice is to backwash filters at least once weekly, in May 1978 the operating mode was changed to an automatic weekly backwash mode. After the system was set on an automatic weekly backwash mode, except for one analysis, flush water suspended solids did not exceed 12 mg/1. These data indicate that limiting the suspended solids in flush water requires careful attention to the design and operation of the filter. Oversiging the filter may not improve its performance; on the contrary, it may hinder the performance. Ideally, for the highest seasonal rest area use, the system should be designed on the basis of a backwash every 2 to 3 days. Hence, in designing recycle-reuse facilities particular attention must be given to filter size, filter media selection, and storage basin design. An evaluation of the design at this study site can be found in the start-up evaluation phase report. (3)

Quality of Recycled Flush Water

During this study the recycled water appearance and the chemical stability of the water remained acceptable as a flush fluid; no odors were detected and rest area users readily accepted the recycled water.

Only minor water quality differences were detected between this study phase and the evaluation phase. Differences in values for suspended solid (SS) between the two study phases were insignificant. Average suspended solids were approximately 15 mg/l for both study phases, with the lowest suspended solids occurring in this work when the filter was backwashed a minimum of once weekly. (Suspended solids were almost consistently

less than 12 mg/l during this period.) Total solids (TS), total dissolved solids (TDS), and total fixed solids (TFS) showed little differences between equilibrium values established in the evaluation phase and those for this study, except where meltwater from ice and snow entered the system and the water values dropped to between 1,700 and 2,000 mg/l when water addition was sufficient to establish recycle ratios of 95% or less. In August, when the recycle level rose to 96.3%, the TS values returned to previous levels of approximately 2,400 mg/l. Chlorides rose slightly during the period in which 96.7% recycle The pattern established by the chlorides was was maintained. similar to the solids data. Chloride concentrations varied between 550 and 600 mg/1. Conductivity patterns basically followed the same trends as the TFS and chlorides; changes in chemical oxygen demand (COD) and total volatile solids (TVS) followed similar trends. Values for COD and TVS during the evaluation phase and this study were within approximately the same range until makeup water was added to maintain 95% (or less) recycle. The COD and TVS were lowered from the 300 to 400 mg/l range to the 200 to 300 mg/l range during the period in which adjustment of the recycle was implemented.

As previously stated, results for alkalinity and pH and nitrogen concentrations were very much related. (The interdependence of these parameters for microbial aquatic systems is well recognized and is a consideration in the design of biological treatment systems.) In the evaluation phase, equilibrium alkalinity and pH for the flush fluid was higher than for the biological unit. This was also true for this Alkalinity and pH values in both phases were within study. the same limits (100 to 150 mg/l and 6.5 to 7.5, respectively), except when transient high alkalinities occurred in the flushed wastes, and caused a shift in flush water alkalinity to the 200 to 300 mg/l range. Although some difference in nitrogen concentrations between the two study phases was observed, as would be expected, the greatest difference was observed when the alkalinity and pH values increased. During the start-up evaluation equilibrium values of approximately 160 mg/l for total Kjeldahl nitrogen (TKN) and ammonia nitrogen (NH3-N), 180 to 220 mg/l for nitrite nitrogen (NO₂-N), and 75 mg/l for nitrate nitrogen (NO3-N) were indicated. Prior to the nitrification experienced in July and August 1978, the range for these values were 100 to 150 mg/l, 70 to 140 mg/l, 100 to 180 mg/l, and 25 to 60 mg/l for TKN, NH_3-N , NO_2-N , and NO₃-N, respectively. Due to the range of conditions (seasonal use, water input balance, temperature, pH, alkalinity, and other waste characteristics) the system was exposed to during

the follow-up study, variations in the nitrogen values experienced represent likely operative characteristics. The nitrification response to increase alkalinity and pH during July and August, when the TKN and NH3-N were lowered to about 25 mg/l, the NO₂-N decreased to less than 5 mg/l, and the NO3-N increased to the 70 to 110 mg/l range, is also a likely operating response. The lowering of the NH3-N during late summer also appears to be related to an increase in NH₂-N losses in the sewer system as a result of an increase in temperature and flushed waste pH. (It should be noted that if the NH₃-N exhibited an inhibitory effect on nitrification, increased losses of NH3-N could result in increased nitrification. This is not an unlikely condition since the total nitrogen decreased during the nitrification experienced in July and August.)

The phosphorus content of the flush water showed an increase between the evaluation phase and the implementation follow-up phase (from a range of 20 to 40 mg/l to a range of 40 to 50 mg/l) with a sharp increase in July and August to a range of 60 to 70 mg/l. During the evaluation phase the raw phosphorus was generally between 30 and 60 mg/l with an occasional value much greater; however, in this study phase, it was usually 30 mg/l or less with the exception of a rise to between 50 and 60 mg/l in late summer. A rising trend of raw wastewater phosphorus was as expected; however, variations in phosphorus concentrations to the extent exhibited was unaccountable Interference with the phosphorus analysis and/or a variation in the phosphorus in the MLSS (influenced by sludge wastage, MLSS concentration and chemical characteristics of the recycle water) are plausible explanations.

CONCLUSIONS

The conclusions from this study are as follows:

- The conclusions established in "Water Reuse at Highway Rest Areas: Evaluation Phase"⁽³⁾ were confirmed.
- The recycle-reuse system biological treatment followed by granular filtration — is capable of producing an acceptable flush water for water closets at 95% recycle (an average reuse of 20 times).
- 3. The recycle-reuse concept and design can be used at other rest areas on a site-specific basis. It has national application.

- 4. In certain geographical areas zero discharge may be attainable at 95% recycle and reuse of water closet flush water.
- 5. The water recycle-reuse system has application for facilities other than highway rest areas. The system can be used at facilities where a substantial amount of the water use is for flushing water closets.

REFERENCES

- Parker, C. E., "Feasibility of Water Reuse at Highway Rest Stations", Journal, American Water Works Association, Vol. 66, No. 4 (April 1974), pp. 247-249.
- 2. Parker, C. E., Ritz, M. A., Heitman, R. H., and Kitchen, J. D., "Evaluation of a Water Reuse Concept for Highway Rest Areas", <u>Transportation Research Record 631</u>, Transportation Research Board, National Academy of Sciences, (1977), p. 37
- 3. Parker, C. E., "Water Reuse at Highway Rest Areas: Evaluation Phase", Virginia Highway and Transportation Research Council, Charlottesville, Virginia, <u>VHTRC 78-R22</u>, December 1977.
- Standard Methods for the Examination of Water and Wastewater, 14th ed., American Public Health Association, Washington, D. C., 1975.

Raw Wastewater Characteristics

	- T.	下0人の0 80です8000000000000000000000000000000000
	പ	0300200248528820812181 1215682118
	SVS	1000/2000 100/20000000000
	SS	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
	TDS	1 2 2
/1.	TVS	0 3 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
in mg	TFS	1000000000000000000000000000000000000
tion	TS	15122333
centra	NO2 ^{-N}	6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
Con	NO3-N	0+602245506モニー 0ムーム・00 「の2558834485555555555555555555555555555555
	NH ₃ -N	00000000000000000000000000000000000000
	TKN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	COD	5333 5333
	Alk.	80%の8544%の575723001%105 80%の80445450501%105 80%の804545555120 80%80%512235555120 80%80%51223555555 80%80 80
	Cond. µmohs	4 4 4 4 5 3 <td< td=""></td<>
	Ηd	- 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	ຸວ	れをそんでてててていららるとを一らっしったここであるののわりやれてのののなどでででででした」「「「「「「」」」」
	Date	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

APPENDIX A-2

Settling Basin Effluent Characteristics

Concentration in mg/l.

	c1 ⁻		218		763	780	1	788	108		0 ° a		6 9 9 9 9 9 9 9 9 9	613	622	620	554	548	509	504	516	533	521	581	383	561	575	554	583	587	
	പ		30		56	40	39	u c			1	50		ц 2	1+0	38	52	50	51	47	47	43	43	4 6	49	42	42	57	64	62	
	SVS		15	2 C 7 C	215	6 E	84	197	0 + t t + t		с. С.	115	 64	56	85	59	54	63	56	57	34	40	147	28	116	24	24	29	33	21	0
	SS		15	37	51	39	84	209	1 1 1		122	140	64	56	89	59	54	63	56	57	34	40	148	28	116	24	24.	29	33	21	
	TDS		2377	2397	2497	2538	2481	2491 2537	2533		2555	2463	2121	2070	2078	2098	1896	1944	1958	1666	1574	1919	2002	2172	1972	1859	2147	2274	2356	2490	
	TVS		369 260	303 342	365	399	376	484 422	411 411		401	409	336	372	404	377	346	392	432	349	250	311	468	486	337	222	408	501	498	501	
,	TFS		2023 1023	2092	2183	2178	2189	2216	2166		2276	2194	1849	1754	1763	1780	1604	1615	1582	1374	1358	1648	1682	1694	1751	1661	1763	1802	1891	2010	
	TS		2392	2434	2548	2577	2565	2700	2577		2677	2603	2185	2126	2167	2157	1950	2007	2014	1723	1608	1959	2150	2180	2088	1883	2171	2303	2389	2511	
	NO2 ^{-N}		166 170	157	195	210	78	141 141	138		155	1	1	1	1	E I	1	1	140	134	138 1	140	113	88	35	0.6	86	0.1	0.1	0.2	
	NO ³ -N		83 6 F	2 2 0 0	30	59	50	37			48	63	1	40	40	34	35	1	1	1	19	H 6	52	75	. 66	10	92	105	121	125 I	
	NH ₃ -N		145 145	101	106	67	74	87	4 I 7 I		131	100	1	16	136	108	56	1	56	78	66	64	61	63	79	67	9	ഗ	19	16	• • •
	TKN		 	111	123	114	97	103 103	1 		1	147	1	104	150	118	67	1	1	16	70	67	66	87	84	78	13	12	21	18	- -
	COD		408 1128	384	366	368	280	478 449			1	521	1	374	374	489	1	1 1	316	341	360	182	416	761	299	311	203	220	210	215	
	Alk.		58 116	9 t t	67	с С С С С С С	25	4 Z 2 5	96		246	163	517	246	229	150	46	58	46	46	42	38	38	34	267	429	42	ω	7	12	x
	Cond. umohs		нцяЛ		4850	1		3300	1		3680	3480		3750	!	3800	2900	1	1	2800	2800	2500	2300	2500	2300	2500	2400	2400	2500	2500	
	Нq		б.1 7	5.8	5.7	0.1	ۍ د د د	50.L	6.7		7.3	7.2	7.8	Э	7.2	0		1.				ۍ م	0	8.0	<u>د</u>	7.44	4	<u>ب</u>	4	م	
	ຸບ		24 22	- 19 19	12			<u>م</u> م			+	2		5	- ດ	15	<u>-</u> თ	14	18	21	2 N		22	23	21 (2T	22 (23	24	24	- 2 2
	Date	1977	9-07 9-14	9-28	10-19		97-11	12-07	12-19	1978	1-04	1-25	2-08	3-15	3-29	4-12	4-26	5-10	5-25	5-31 2-31	<u>6-U7</u>	6 - 1 4	6 - 2 L	6-29	7-05	7-12	7-19	7-26	8-02	8-03	N-LO

C-W VTANJIJY

Flush Water Characteristics

Concentration in mg/l.

-		
c1	700 707 759 808 817 6514 6514	9144082209074098100 4046082409074098100 4046082409074008100 40460820900740081000
പ	5101 101/08/11/2 t121 1t1tt2:1/2	001+4700000444 4600000444
SVS	8461 406860468	946てキレ0588028下680
SS	3491 7663664 2124 7777777	のれらてれく0の880281680 てて てて22て28
TDS	2337 2497 2497 2497 2534 25529 25539 25533 25533 25533 25533 25533 25533 25533 25533 25533 25533 25533 25533 25533	2070 2094 2094 1716 1932 1932 1868 1909 18889 18839 18839 22444 2305 23469 23469
TVS	3352 319 319 319 319 319 319 319 319 319 319	3352 3472 3372 3372 3372 3372 3372 3372 337
TFS	1983 2050 2104 2166 2166 2180 22180 22180 22180 22180 22187 22187 22399 1792	1748 1595 1595 1595 1547 1547 1547 1566 1556 1556 15663 15663 15663 18942 18942
TS	2550 2550 2550 2550 2550 2550 2550 2550	22100 22100 12897 1737 1955 1955 1886 1886 18856 18856 18856 23845 23845 23845 23874 23856 23857 23856 22856 22857 22856 22857 22856 22857 22856 22857 22856 22857 22856 22857 22856 22857 22856 22856 22856 22857 228566 22856 22856 22856 22856 228566 22856 22856 22856 22856 228
NO2 ^{-N}	1 3 1 3 1	
NO ^{3-N}	1 3 1 4 3 1 4 3 3 3 3 5 3 5 1 5 5 5 5 5 5 5 5 5 5 5 5	1000102458228111250 1000222458228111220 11
NH ₃ -N	163 130 130 107 110 91 91 91 93 99	11 131 132 10 10 10 10 10 10 10 10 10 10 10 10 10
TKN	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1123 140 101 101 100 100 100 100 100 100 100
COD	2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	430 1222 1222 1222 1222 1222 1222 1222 12
Alk.	2888 2888 2888 2888 2888 2888 2888 288	04136430044260 082336430042560 0981111111112585
Cond. µmohs	µтоля +350 +350 +750 +750 +750 3350 3350 3580 3580 3630 3630 3630	3850 2950 2950 2950 2800 2800 2800 2800 2800 2800 2800 28
hq	0134 1100000010 0134 0000000 0110	66.20 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 77.000 77.000 77.000 77.00000000
ູ່	0104 f 4040105	++5+30000000000000000000000000000000000
Date	$ \frac{1977}{9-07} \\ 9-07 \\ 9-14 \\ 9-28 \\ 10-19 \\ 11-02 \\ 11-02 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-19 \\ 12-15 \\ 12-19 \\ 12-15 $	8822 102 10

A-3